First Page Notations and Definitions

Remarks on the Jacobson radical

André Leroy and Jerzy Matczuk

NTRM 2018, Gebze Technical University

June 2018

R denotes an associative ring with unity, J(R) denotes the Jacobson radical of *R* and U(R) is the set of units of *R*.

Definition

R denotes an associative ring with unity, J(R) denotes the Jacobson radical of *R* and U(R) is the set of units of *R*.

Definition

$$J(R) \subseteq \Delta(R) := \{r \in R \mid r + U(R) \subseteq U(R)\}$$

Lemma

•
$$\Delta(R) = \{r \in R \mid \forall_{u \in U(R)} \ ru + 1 \in U(R)\} = \{r \in R \ \forall_{u \in U(R)} \ ur + 1 \in U(R)\};$$

R denotes an associative ring with unity, J(R) denotes the Jacobson radical of *R* and U(R) is the set of units of *R*.

Definition

$$J(R) \subseteq \Delta(R) := \{r \in R \mid r + U(R) \subseteq U(R)\}$$

Lemma

For any ring R, we have:

•
$$\Delta(R) = \{r \in R \mid \forall_{u \in U(R)} \ ru + 1 \in U(R)\} = \{r \in R \mid \forall_{u \in U(R)} \ ur + 1 \in U(R)\};$$

2 For any $r \in \Delta(R)$ and $u \in U(R)$, $ur, ru \in \Delta(R)$;

R denotes an associative ring with unity, J(R) denotes the Jacobson radical of *R* and U(R) is the set of units of *R*.

Definition

$$J(R) \subseteq \Delta(R) := \{r \in R \mid r + U(R) \subseteq U(R)\}$$

Lemma

●
$$\Delta(R) = \{r \in R \mid \forall_{u \in U(R)} ru + 1 \in U(R)\} = \{r \in R \mid \forall_{u \in U(R)} ur + 1 \in U(R)\};$$

- **2** For any $r \in \Delta(R)$ and $u \in U(R)$, $ur, ru \in \Delta(R)$;
- **3** $\Delta(R)$ is a subring of R;

R denotes an associative ring with unity, J(R) denotes the Jacobson radical of *R* and U(R) is the set of units of *R*.

Definition

$$J(R) \subseteq \Delta(R) := \{r \in R \mid r + U(R) \subseteq U(R)\}$$

Lemma

○
$$\Delta(R) = \{r \in R \mid \forall_{u \in U(R)} ru + 1 \in U(R)\} = \{r \in R \mid \forall_{u \in U(R)} ur + 1 \in U(R)\};$$

- 2 For any $r \in \Delta(R)$ and $u \in U(R)$, $ur, ru \in \Delta(R)$;
- **3** $\Delta(R)$ is a subring of R;
- $\Delta(R)$ is an ideal of R if and only if $\Delta(R) = J(R)$;

R denotes an associative ring with unity, J(R) denotes the Jacobson radical of *R* and U(R) is the set of units of *R*.

Definition

$$J(R) \subseteq \Delta(R) := \{r \in R \mid r + U(R) \subseteq U(R)\}$$

Lemma

$$\Delta(R) = \{r \in R \mid \forall_{u \in U(R)} \quad ru + 1 \in U(R)\} = \{r \in R \mid \forall_{u \in U(R)} \quad ur + 1 \in U(R)\};$$

- 2 For any $r \in \Delta(R)$ and $u \in U(R)$, $ur, ru \in \Delta(R)$;
- **3** $\Delta(R)$ is a subring of R;
- $\Delta(R)$ is an ideal of R if and only if $\Delta(R) = J(R)$;
- So For any rings R_i , $i \in I$, $\Delta(\prod_{i \in I} R_i) = \prod_{i \in I} \Delta(R_i)$.

Sketch of the proof

æ

イロト イヨト イヨト イヨト

Sketch of the proof (1) For any $u \in U(R)$ and $r \in R$, $ru^{-1} + 1 \in U(R)$ iff $r + u \in U(R)$ iff $u^{-1}r + 1 \in U(R)$. Sketch of the proof (1) For any $u \in U(R)$ and $r \in R$, $ru^{-1} + 1 \in U(R)$ iff $r + u \in U(R)$ iff $u^{-1}r + 1 \in U(R)$. (2) If $r \in \Delta(R)$ and $u, v \in U(R)$ then $(vu)r + 1 \in U(R)$ so by (1), $ur \in \Delta$ Sketch of the proof (1) For any $u \in U(R)$ and $r \in R$, $ru^{-1} + 1 \in U(R)$ iff $r + u \in U(R)$ iff $u^{-1}r + 1 \in U(R)$. (2) If $r \in \Delta(R)$ and $u, v \in U(R)$ then $(vu)r + 1 \in U(R)$ so by (1), $ur \in \Delta$ (3) Let $r, s \in \Delta(R)$. Then $-r + s + U(R) \subseteq -r + U(R) = -r - U(R) \subseteq U(R)$, i.e. Δ is a subgroup of R, +. Then also $rs = r(s + 1) - r \in \Delta(R)$, as $r(s + 1) \in \Delta(R)$ by (2). Sketch of the proof (1) For any $u \in U(R)$ and $r \in R$, $ru^{-1} + 1 \in U(R)$ iff $r + u \in U(R)$ iff $u^{-1}r + 1 \in U(R)$. (2) If $r \in \Delta(R)$ and $u, v \in U(R)$ then $(vu)r + 1 \in U(R)$ so by (1), $\mu r \in \Delta$ (3) Let $r, s \in \Delta(R)$. Then $-r+s+U(R) \subseteq -r+U(R) = -r-U(R) \subseteq U(R)$, i.e. Δ is a subgroup of R, +. Then also $rs = r(s+1) - r \in \Delta(R)$, as $r(s+1) \in \Delta(R)$ by (2). (4) If $\Delta(R)$ is an ideal of R and $r \in R$. Then for any $x \in \Delta(R)$, $rx + 1 \in U(R)$, and $\Delta(R) \subseteq J(R)$ follows, i.e. $\Delta(R) = J(R)$.

伺 ト イヨ ト イヨト

(1) $\Delta(R)$ is closed by multiplication (on the right and on the left) by nilpotent elements.

→ < ∃ →

(1) $\Delta(R)$ is closed by multiplication (on the right and on the left) by nilpotent elements.

(2) If $2 \in U(R)$ then $\Delta(R)$ is closed by multiplication (on the right and on the left) by idempotents.

→ < Ξ → <</p>

(1) $\Delta(R)$ is closed by multiplication (on the right and on the left) by nilpotent elements.

(2) If $2 \in U(R)$ then $\Delta(R)$ is closed by multiplication (on the right and on the left) by idempotents.

Example

Let A be a commutative domain such that $J(A) \neq 0$ and define R = A[t]. Then J(R) = 0 and U(R) = U(A), but for any $a \in J(A)$, we have

$$a + U(R) = a + U(A) \subseteq U(A) = U(R)$$

(1) $\Delta(R)$ is closed by multiplication (on the right and on the left) by nilpotent elements.

(2) If $2 \in U(R)$ then $\Delta(R)$ is closed by multiplication (on the right and on the left) by idempotents.

Example

Let A be a commutative domain such that $J(A) \neq 0$ and define R = A[t]. Then J(R) = 0 and U(R) = U(A), but for any $a \in J(A)$, we have

$$a + U(R) = a + U(A) \subseteq U(A) = U(R)$$

So that $0 \neq J(A) \subseteq \Delta(R)$ but J(R) = 0.

<日

Theorem

Let R be a unital ring and T be the subring of R generated by U(R). Then:

- $\Delta(R) = J(T)$ and $\Delta(S) = \Delta(R)$, for any subring S of R such that $T \subseteq S$;
- Δ(R) is the largest Jacobson radical ring contained in R which is closed with respect to multiplication by units of R.

→ < Ξ → <</p>

Theorem

Let R be a unital ring and T be the subring of R generated by U(R). Then:

- $\Delta(R) = J(T)$ and $\Delta(S) = \Delta(R)$, for any subring S of R such that $T \subseteq S$;
- Q Δ(R) is the largest Jacobson radical ring contained in R which is closed with respect to multiplication by units of R.

Corollary

Let R be a ring such that every element of R is a sum of units. Then $\Delta(R) = J(R)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

First Page Notations and Definitions

examples of rings generated by their units

Examples

Some examples of rings generated by their units:

André Leroy and Jerzy Matczuk Remarks on the Jacobson radical

First Page Notations and Definitions

examples of rings generated by their units

Examples

Some examples of rings generated by their units:

• KG where K is a division ring, G a group.

examples of rings generated by their units

Examples

Some examples of rings generated by their units:

- KG where K is a division ring, G a group.
- $M_n(R)$ for $n \ge 2$ and R is any ring.

examples of rings generated by their units

Examples

Some examples of rings generated by their units:

- KG where K is a division ring, G a group.
- 2 $M_n(R)$ for $n \ge 2$ and R is any ring.
- A clean ring R such that $2 \in U(R)$.

examples of rings generated by their units

Examples

Some examples of rings generated by their units:

- KG where K is a division ring, G a group.
- 2 $M_n(R)$ for $n \ge 2$ and R is any ring.
- A clean ring R such that $2 \in U(R)$.

•
$$K[x, x^{-1}; \sigma]$$
 where $\sigma \in Aut(K)$.

First Page Notations and Definitions

Proposition

André Leroy and Jerzy Matczuk Remarks on the Jacobson radical

ヘロト ヘロト ヘビト ヘビト

æ

Let R be an algebra over a field F. If Dim_FR < |F| then Δ(R) is a nil ring.

André Leroy and Jerzy Matczuk Remarks on the Jacobson radical

/⊒ ► < ∃ ►

B> B

- Let R be an algebra over a field F. If Dim_FR < |F| then Δ(R) is a nil ring.
- If R is an algebra over a field F, algebraic elements from Δ(R) are nilpotent.

→ < ∃ →</p>

- Let R be an algebra over a field F. If Dim_FR < |F| then Δ(R) is a nil ring.
- If R is an algebra over a field F, algebraic elements from Δ(R) are nilpotent.
- Let S be a subring of R such that $U(S) = U(R) \cap S$. Then $\Delta(R) \cap S \subseteq \Delta(S)$.

- Let R be an algebra over a field F. If Dim_FR < |F| then Δ(R) is a nil ring.
- If R is an algebra over a field F, algebraic elements from Δ(R) are nilpotent.
- Let S be a subring of R such that $U(S) = U(R) \cap S$. Then $\Delta(R) \cap S \subseteq \Delta(S)$.
- Let I be an ideal of R such that $I \subseteq J(R)$. Then $\Delta(R/I) = \Delta(R)/I$.

- Let R be an algebra over a field F. If Dim_FR < |F| then Δ(R) is a nil ring.
- If R is an algebra over a field F, algebraic elements from Δ(R) are nilpotent.
- Let S be a subring of R such that $U(S) = U(R) \cap S$. Then $\Delta(R) \cap S \subseteq \Delta(S)$.
- Let I be an ideal of R such that $I \subseteq J(R)$. Then $\Delta(R/I) = \Delta(R)/I$.

→ < ∃ →</p>

Let A be a commutative domain with $J(A) \neq 0$ and S = A[x]. Then $0 \neq J(A) \subseteq \Delta(S)$ and clearly J(S) = 0. $R = M_2(S)$, where A is a commutative local domain. As we have seen $\Delta(R) = J(R) = 0$. Notice that the center Z = Z(R) of $R = M_2(S)$ is isomorphic to S and $U(Z) = U(R) \cap Z$. Therefore $0 = \Delta(R) \cap Z \subseteq \Delta(Z) \simeq J(A) \neq 0$. Thus the inclusion from the above corollary (5) can be strict even when J(R) = 0 = J(Z(R)).

伺 ト イヨト イヨト

For a ring R $(1 \in R)$ and a subring $S \subset R$ such that $1 \notin S$, we denote \widehat{S} the subring of R generated by $S \cup \{1\}$.

Proposition

• For any unital ring R, $\Delta(\widehat{\Delta(R)}) = \Delta(R)$, i.e. Δ is a closure operator.

$$U(\widehat{\Delta(R)}) = U(R) \cap \widehat{\Delta(R)}.$$

For a ring R $(1 \in R)$ and a subring $S \subset R$ such that $1 \notin S$, we denote \widehat{S} the subring of R generated by $S \cup \{1\}$.

Proposition

• For any unital ring R,
$$\Delta(\widehat{\Delta(R)}) = \Delta(R)$$
, i.e. Δ is a closure operator.

$$2 \ U(\widehat{\Delta(R)}) = U(R) \cap \widehat{\Delta(R)}.$$

Examples

For any ring R denote $T_n(R)$ the upper triangular matrix rings over R and $J_n(R)$ all strictly upper triangular matrices.

For a ring R $(1 \in R)$ and a subring $S \subset R$ such that $1 \notin S$, we denote \widehat{S} the subring of R generated by $S \cup \{1\}$.

Proposition

• For any unital ring R,
$$\Delta(\widehat{\Delta(R)}) = \Delta(R)$$
, i.e. Δ is a closure operator.

$$2 \ U(\widehat{\Delta(R)}) = U(R) \cap \widehat{\Delta(R)}.$$

Examples

For any ring R denote $T_n(R)$ the upper triangular matrix rings over R and $J_n(R)$ all strictly upper triangular matrices.

For a ring R $(1 \in R)$ and a subring $S \subset R$ such that $1 \notin S$, we denote \widehat{S} the subring of R generated by $S \cup \{1\}$.

Proposition

• For any unital ring R,
$$\Delta(\widehat{\Delta(R)}) = \Delta(R)$$
, i.e. Δ is a closure operator.

$$2 \ U(\widehat{\Delta(R)}) = U(R) \cap \widehat{\Delta(R)}.$$

Examples

For any ring R denote $T_n(R)$ the upper triangular matrix rings over R and $J_n(R)$ all strictly upper triangular matrices.

•
$$\Delta(T_n(R)) = D_n(\Delta(R)) + J_n(R);$$

- $(R[[x]]) = \Delta(R)[[x]].$

For any ring R, $\Delta(R) = J(R)$ if and only if $\Delta(R/J(R)) = 0$.

André Leroy and Jerzy Matczuk Remarks on the Jacobson radical

æ

▲御▶ ▲臣▶ ▲臣▶ -

For any ring R, $\Delta(R) = J(R)$ if and only if $\Delta(R/J(R)) = 0$.

The following theorem indicates a few classes of rings in which $\Delta(R) = J(R)$.

伺き くほき くほう

э

For any ring R, $\Delta(R) = J(R)$ if and only if $\Delta(R/J(R)) = 0$.

The following theorem indicates a few classes of rings in which $\Delta(R) = J(R)$.

Theorem

 $\Delta(R) = J(R)$ if R is a ring satisfying one of the following conditions:

 R/J(R) is isomorphic to a product of matrix rings and division rings.

For any ring R, $\Delta(R) = J(R)$ if and only if $\Delta(R/J(R)) = 0$.

The following theorem indicates a few classes of rings in which $\Delta(R) = J(R)$.

Theorem

- R/J(R) is isomorphic to a product of matrix rings and division rings.
- Q R is a semilocal ring.

For any ring R, $\Delta(R) = J(R)$ if and only if $\Delta(R/J(R)) = 0$.

The following theorem indicates a few classes of rings in which $\Delta(R) = J(R)$.

Theorem

- R/J(R) is isomorphic to a product of matrix rings and division rings.
- Q R is a semilocal ring.
- **③** *R* is a clean ring such that $2 \in U(R)$.

For any ring R, $\Delta(R) = J(R)$ if and only if $\Delta(R/J(R)) = 0$.

The following theorem indicates a few classes of rings in which $\Delta(R) = J(R)$.

Theorem

- R/J(R) is isomorphic to a product of matrix rings and division rings.
- 2 R is a semilocal ring.
- **③** *R* is a clean ring such that $2 \in U(R)$.
- R is a UJ-ring, i.e. when U(R) = 1 + J(R).

For any ring R, $\Delta(R) = J(R)$ if and only if $\Delta(R/J(R)) = 0$.

The following theorem indicates a few classes of rings in which $\Delta(R) = J(R)$.

Theorem

- R/J(R) is isomorphic to a product of matrix rings and division rings.
- 2 R is a semilocal ring.
- **③** *R* is a clean ring such that $2 \in U(R)$.
- R is a UJ-ring, i.e. when U(R) = 1 + J(R).
- Solution R has stable range 1.

For any ring R, $\Delta(R) = J(R)$ if and only if $\Delta(R/J(R)) = 0$.

The following theorem indicates a few classes of rings in which $\Delta(R) = J(R)$.

Theorem

- R/J(R) is isomorphic to a product of matrix rings and division rings.
- Q R is a semilocal ring.
- **③** *R* is a clean ring such that $2 \in U(R)$.
- R is a UJ-ring, i.e. when U(R) = 1 + J(R).
- In the stable range 1.
- R = FG is a group algebra over a field F.

Idempotents

Theorem

For any ring R, the following conditions hold: (1) $\Delta(R)$ does not contain nonzero idempotents.

André Leroy and Jerzy Matczuk Remarks on the Jacobson radical

Idempotents

Theorem

For any ring R, the following conditions hold: (1) $\Delta(R)$ does not contain nonzero idempotents. (2) $\Delta(R)$ does not contain nonzero unit regular elements.

Idempotents

Theorem

For any ring R, the following conditions hold: (1) $\Delta(R)$ does not contain nonzero idempotents. (2) $\Delta(R)$ does not contain nonzero unit regular elements. (3) Let $e^2 = e$ be such that $e\Delta(R)e \subseteq \Delta(R)$. Then $e\Delta(R)e \subseteq \Delta(eRe)$.

Examples

Examples

(1)Let S be any ring such that J(S) = 0 and $\Delta(S) \neq 0$ and let $R = M_2(S)$. Then $\Delta(R) = J(R) = 0$. Therefore, if $e = e_{11} \in R$, then $e\Delta(R)e = eJ(R)e = J(eRe) = 0$. and $\Delta(eRe) \simeq \Delta(S) \neq 0$. This shows that the inclusion $e\Delta(R)e \subsetneq \Delta(eRe)$.

Examples

(1)Let S be any ring such that J(S) = 0 and $\Delta(S) \neq 0$ and let $R = M_2(S)$. Then $\Delta(R) = J(R) = 0$. Therefore, if $e = e_{11} \in R$, then $e\Delta(R)e = eJ(R)e = J(eRe) = 0$. and $\Delta(eRe) \simeq \Delta(S) \neq 0$. This shows that the inclusion $e\Delta(R)e \subsetneq \Delta(eRe)$. (2) Let $R = \mathbb{F}_2 < x, y > / < x^2 >$. Then J(R) = 0 and $U(R) = 1 + \mathbb{F}_2 x + xRx$. In particular $\mathbb{F}_2 x + xRx$ is contained in $\Delta(R)$ but J(R) = 0.

一日

Examples

(1)Let S be any ring such that J(S) = 0 and $\Delta(S) \neq 0$ and let $R = M_2(S)$. Then $\Delta(R) = J(R) = 0$. Therefore, if $e = e_{11} \in R$, then $e\Delta(R)e = eJ(R)e = J(eRe) = 0$. and $\Delta(eRe) \simeq \Delta(S) \neq 0$. This shows that the inclusion $e\Delta(R)e \subsetneq \Delta(eRe)$. (2) Let $R = \mathbb{F}_2 < x, y > / < x^2 >$. Then J(R) = 0 and $U(R) = 1 + \mathbb{F}_2 x + xRx$. In particular $\mathbb{F}_2 x + xRx$ is contained in $\Delta(R)$ but J(R) = 0.

Let us end this part with the following proposition.

Proposition

Let R be 2-primal ring. Then $\Delta(R[x]) = \Delta(R) + J(R[x])$.

- 4 同 6 4 日 6 4 日

Quasi-inverses and reflexive inverses

< ∃ >

B> B

Quasi-inverses and reflexive inverses

Joint work with A. Alahmadi and S.K. Jain

< ∃ >

Quasi-inverses and reflexive inverses

Joint work with A. Alahmadi and S.K. Jain

An element $a \in R$ is a (von Neumann) regular element if $I(a) := \{x \in R \mid a = axa\} \neq \emptyset$. In this case $ref(a) = \{x \in I(a) \mid xax = x\} \neq \emptyset$. The element of ref(a) are the reflexive inverses of a.

Quasi-inverses and reflexive inverses

Joint work with A. Alahmadi and S.K. Jain

An element $a \in R$ is a (von Neumann) regular element if $I(a) := \{x \in R \mid a = axa\} \neq \emptyset$. In this case $ref(a) = \{x \in I(a) \mid xax = x\} \neq \emptyset$. The element of ref(a) are the reflexive inverses of a.

Lemma

For $a \in R$ and $a_0 \in I(a)$, we have

$$I(a) = \{a_0 + t - a_0 a t a a_0 \mid t \in R\}.$$

For
$$a \in Reg(R)$$
, let $\varphi_a : I(a) \longrightarrow Ref(a)$ be such that $\varphi_a(x) = xax$. Then

- **1** The map φ_a is onto.
- 2 Ref(a) = I(a)aI(a).
- If $x, y \in I(a)$ are such that $\varphi_a(x) = \varphi_a(y)$ then $x y \in I(a) \cap r(a)$.

• Let
$$x \in Ref(a)$$
, then $\varphi_a(x) = x$.

伺 ト イヨ ト イヨ ト

3

For
$$a \in Reg(R)$$
, let $\varphi_a : I(a) \longrightarrow Ref(a)$ be such that $\varphi_a(x) = xax$. Then

- **1** The map φ_a is onto.
- 2 Ref(a) = I(a)aI(a).
- If $x, y \in I(a)$ are such that $\varphi_a(x) = \varphi_a(y)$ then $x y \in I(a) \cap r(a)$.

• Let
$$x \in Ref(a)$$
, then $\varphi_a(x) = x$.

Lemma

Let $a_0 \in I(a)$. Write $e = aa_0$, $f = a_0a$ and e' = 1 - e, f' = 1 - f. Then

(i)
$$lann(a) = l(a) + r(a) = Re' + f'R.$$

(ii) $l(a) = a_0 + lann(a) = a_0 + Re' + f'R.$
(iii) If $a_0 \in Ref(a)$, then $Ref(a) = a_0 + fRe' + f'Re + f'RaRe'.$

Let R be a semiprime ring. If $a \in Reg(R)$, then for any $b \in R$, bl(a)b is a singleton set if and only if $b \in Ra \cap aR$.

伺 ト イヨ ト イヨト

Let R be a semiprime ring. If $a \in Reg(R)$, then for any $b \in R$, bl(a)b is a singleton set if and only if $b \in Ra \cap aR$.

Proposition

Let R be a semiprime ring and let $a.b \in Reg(R)$. Then $I(a) \subseteq I(b)$ if and only if $bR \cap dR = 0$ and $Rb \cap Rd = 0$ where a = d + b.

/□ ▶ ◀ ⋽ ▶ ◀

Let R be a semiprime ring. If $a \in Reg(R)$, then for any $b \in R$, bl(a)b is a singleton set if and only if $b \in Ra \cap aR$.

Proposition

Let R be a semiprime ring and let $a.b \in Reg(R)$. Then $I(a) \subseteq I(b)$ if and only if $bR \cap dR = 0$ and $Rb \cap Rd = 0$ where a = d + b.

Theorem

Let a, b be two elements in a semiprime ring R, the following are equivalent

① a = b

2
$$Ref(a) = Ref(b)$$

THANK YOU !

André Leroy and Jerzy Matczuk Remarks on the Jacobson radical

(*) * 문 * * 문 *

э