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Notations and Definitions

R denotes an associative ring with unity, J(R) denotes the
Jacobson radical of R and U(R) is the set of units of R.

Definition

J(R) ⊆ ∆(R) := {r ∈ R | r + U(R) ⊆ U(R)}

Lemma

For any ring R, we have:

1 ∆(R) = {r ∈ R | ∀u∈U(R) ru + 1 ∈ U(R)} = {r ∈ R |
∀u∈U(R) ur + 1 ∈ U(R)};

2 For any r ∈ ∆(R) and u ∈ U(R), ur , ru ∈ ∆(R);

3 ∆(R) is a subring of R;

4 ∆(R) is an ideal of R if and only if ∆(R) = J(R);

5 For any rings Ri , i ∈ I , ∆(
∏

i∈I Ri ) =
∏

i∈I ∆(Ri ).
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Sketch of the proof

(1) For any u ∈ U(R) and r ∈ R, ru−1 + 1 ∈ U(R) iff
r + u ∈ U(R) iff u−1r + 1 ∈ U(R).
(2) If r ∈ ∆(R) and u, v ∈ U(R) then (vu)r + 1 ∈ U(R) so by (1),
ur ∈ ∆
(3) Let r , s ∈ ∆(R). Then
−r + s + U(R) ⊆ −r + U(R) = −r − U(R) ⊆ U(R), i.e. ∆ is a
subgroup of R,+. Then also rs = r(s + 1)− r ∈ ∆(R), as
r(s + 1) ∈ ∆(R) by (2).
(4) If ∆(R) is an ideal of R and r ∈ R. Then for any x ∈ ∆(R),
rx + 1 ∈ U(R), and ∆(R) ⊆ J(R) follows, i.e. ∆(R) = J(R).
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Corollary

(1) ∆(R) is closed by multiplication (on the right and on the left)
by nilpotent elements.

(2) If 2 ∈ U(R) then ∆(R) is closed by multiplication (on the right
and on the left) by idempotents.

Example

Let A be a commutative domain such that J(A) 6= 0 and define
R = A[t]. Then J(R) = 0 and U(R) = U(A), but for any
a ∈ J(A), we have

a + U(R) = a + U(A) ⊆ U(A) = U(R)

So that 0 6= J(A) ⊆ ∆(R) but J(R) = 0.

André Leroy and Jerzy Matczuk Remarks on the Jacobson radical



First Page
Notations and Definitions

Corollary

(1) ∆(R) is closed by multiplication (on the right and on the left)
by nilpotent elements.
(2) If 2 ∈ U(R) then ∆(R) is closed by multiplication (on the right
and on the left) by idempotents.

Example

Let A be a commutative domain such that J(A) 6= 0 and define
R = A[t]. Then J(R) = 0 and U(R) = U(A), but for any
a ∈ J(A), we have

a + U(R) = a + U(A) ⊆ U(A) = U(R)

So that 0 6= J(A) ⊆ ∆(R) but J(R) = 0.
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Theorem

Let R be a unital ring and T be the subring of R generated by
U(R). Then:

1 ∆(R) = J(T ) and ∆(S) = ∆(R), for any subring S of R such
that T ⊆ S ;

2 ∆(R) is the largest Jacobson radical ring contained in R
which is closed with respect to multiplication by units of R.

Corollary

Let R be a ring such that every element of R is a sum of units.
Then ∆(R) = J(R).
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examples of rings generated by their units

Examples

Some examples of rings generated by their units:

1 KG where K is a division ring, G a group.

2 Mn(R) for n ≥ 2 and R is any ring.

3 A clean ring R such that 2 ∈ U(R).

4 K [x , x−1;σ] where σ ∈ Aut(K ).
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Proposition

1 Let R be an algebra over a field F . If DimFR < |F | then
∆(R) is a nil ring.

2 If R is an algebra over a field F , algebraic elements from
∆(R) are nilpotent.

3 Let S be a subring of R such that U(S) = U(R) ∩ S . Then
∆(R) ∩ S ⊆ ∆(S).

4 Let I be an ideal of R such that I ⊆ J(R). Then
∆(R/I ) = ∆(R)/I .

5 ∆(R) ∩ Z (R) ⊆ ∆(Z (R)).
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An example

Let A be a commutative domain with J(A) 6= 0 and S = A[x ].
Then 0 6= J(A) ⊆ ∆(S) and clearly J(S) = 0. R = M2(S), where
A is a commutative local domain. As we have seen
∆(R) = J(R) = 0. Notice that the center Z = Z (R) of
R = M2(S) is isomorphic to S and U(Z ) = U(R) ∩ Z . Therefore
0 = ∆(R) ∩ Z ⊆ ∆(Z ) ' J(A) 6= 0. Thus the inclusion from the
above corollary (5) can be strict even when J(R) = 0 = J(Z (R)).
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Delta hat

For a ring R (1 ∈ R) and a subring S ⊂ R such that 1 /∈ S , we
denote Ŝ the subring of R generated by S ∪ {1}.

Proposition

1 For any unital ring R, ∆(∆̂(R)) = ∆(R), i.e. ∆ is a closure
operator.

2 U(∆̂(R)) = U(R) ∩ ∆̂(R).

Examples

For any ring R denote Tn(R) the upper triangular matrix rings
over R and Jn(R) all strictly upper triangular matrices.

1 ∆(Tn(R)) = Dn(∆(R)) + Jn(R);

2 ∆(R[x ]/(xn)) = ∆(R)[x ]/(xn);

3 ∆(R[[x ]]) = ∆(R)[[x ]].
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denote Ŝ the subring of R generated by S ∪ {1}.

Proposition

1 For any unital ring R, ∆(∆̂(R)) = ∆(R), i.e. ∆ is a closure
operator.

2 U(∆̂(R)) = U(R) ∩ ∆̂(R).

Examples

For any ring R denote Tn(R) the upper triangular matrix rings
over R and Jn(R) all strictly upper triangular matrices.

1 ∆(Tn(R)) = Dn(∆(R)) + Jn(R);

2 ∆(R[x ]/(xn)) = ∆(R)[x ]/(xn);

3 ∆(R[[x ]]) = ∆(R)[[x ]].
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Proposition

For any ring R, ∆(R) = J(R) if and only if ∆(R/J(R)) = 0.

The following theorem indicates a few classes of rings in which
∆(R) = J(R).

Theorem

∆(R) = J(R) if R is a ring satisfying one of the following
conditions:

1 R/J(R) is isomorphic to a product of matrix rings and
division rings.

2 R is a semilocal ring.

3 R is a clean ring such that 2 ∈ U(R).

4 R is a UJ-ring, i.e. when U(R) = 1 + J(R).

5 R has stable range 1.

6 R = FG is a group algebra over a field F .

Let us give a proof of (5).
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André Leroy and Jerzy Matczuk Remarks on the Jacobson radical



First Page
Notations and Definitions

Idempotents

Theorem

For any ring R, the following conditions hold:
(1) ∆(R) does not contain nonzero idempotents.

(2) ∆(R) does not contain nonzero unit regular elements.
(3) Let e2 = e be such that e∆(R)e ⊆ ∆(R). Then
e∆(R)e ⊆ ∆(eRe).
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André Leroy and Jerzy Matczuk Remarks on the Jacobson radical



First Page
Notations and Definitions

Idempotents

Theorem

For any ring R, the following conditions hold:
(1) ∆(R) does not contain nonzero idempotents.
(2) ∆(R) does not contain nonzero unit regular elements.
(3) Let e2 = e be such that e∆(R)e ⊆ ∆(R). Then
e∆(R)e ⊆ ∆(eRe).
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The inclusion of the last statement can be strict this is the first
example of the following ones.

Examples

(1)Let S be any ring such that J(S) = 0 and ∆(S) 6= 0 and let
R = M2(S). Then ∆(R) = J(R) = 0. Therefore, if e = e11 ∈ R,
then e∆(R)e = eJ(R)e = J(eRe) = 0. and ∆(eRe) ' ∆(S) 6= 0.
This shows that the inclusion e∆(R)e ( ∆(eRe).
(2) Let R = F2 < x , y > / < x2 >. Then J(R) = 0 and
U(R) = 1 + F2x + xRx . In particular F2x + xRx is contained in
∆(R) but J(R) = 0.

Let us end this part with the following proposition.

Proposition

Let R be 2-primal ring. Then ∆(R[x ]) = ∆(R) + J(R[x ]).
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Another Short Story

Quasi-inverses and reflexive inverses

Joint work with A. Alahmadi and S.K. Jain

An element a ∈ R is a (von Neumann) regular element if
I (a) := {x ∈ R | a = axa} 6= ∅. In this case
ref (a) = {x ∈ I (a) | xax = x} 6= ∅. The element of ref (a) are the
reflexive inverses of a.

Lemma

For a ∈ R and a0 ∈ I (a), we have

I (a) = {a0 + t − a0ataa0 | t ∈ R}.
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Proposition

For a ∈ Reg(R), let ϕa : I (a) −→ Ref (a) be such that
ϕa(x) = xax . Then

1 The map ϕa is onto.

2 Ref (a) = I (a)aI (a).

3 If x , y ∈ I (a) are such that ϕa(x) = ϕa(y) then
x − y ∈ l(a) ∩ r(a).

4 Let x ∈ Ref (a), then ϕa(x) = x .

Lemma

Let a0 ∈ I (a). Write e = aa0, f = a0a and e ′ = 1− e, f ′ = 1− f .
Then

(i) Iann(a) = l(a) + r(a) = Re ′ + f ′R.

(ii) I (a) = a0 + Iann(a) = a0 + Re ′ + f ′R.

(iii) If a0 ∈ Ref (a), then Ref (a) = a0 + fRe ′ + f ′Re + f ′RaRe ′.
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Proposition

Let R be a semiprime ring. If a ∈ Reg(R), then for any b ∈ R,
bI (a)b is a singleton set if and only if b ∈ Ra ∩ aR.

Proposition

Let R be a semiprime ring and let a.b ∈ Reg(R). Then I (a) ⊆ I (b)
if and only if bR ∩ dR = 0 and Rb ∩ Rd = 0 where a = d + b.

Theorem

Let a, b be two elements in a semiprime ring R, the following are
equivalent

1 a = b

2 Ref (a) = Ref (b)

3 I (a) = I (b)
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THANK YOU !
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