Remarks on the Jacobson radical

André Leroy and Jerzy Matczuk
NTRM 2018, Gebze Technical University
June 2018

Notations and Definitions

R denotes an associative ring with unity, $J(R)$ denotes the Jacobson radical of R and $U(R)$ is the set of units of R.

Definition

Notations and Definitions

R denotes an associative ring with unity, $J(R)$ denotes the Jacobson radical of R and $U(R)$ is the set of units of R.

Definition

$$
J(R) \subseteq \Delta(R):=\{r \in R \mid r+U(R) \subseteq U(R)\}
$$

Lemma

For any ring R, we have:
(1) $\Delta(R)=\left\{r \in R \mid \forall_{u \in U(R)} r u+1 \in U(R)\right\}=\{r \in R \mid$

$$
\left.\forall_{u \in U(R)} \text { ur }+1 \in U(R)\right\}
$$

Notations and Definitions

R denotes an associative ring with unity, $J(R)$ denotes the Jacobson radical of R and $U(R)$ is the set of units of R.

Definition

$$
J(R) \subseteq \Delta(R):=\{r \in R \mid r+U(R) \subseteq U(R)\}
$$

Lemma

For any ring R, we have:
(1) $\Delta(R)=\left\{r \in R \mid \forall_{u \in U(R)} r u+1 \in U(R)\right\}=\{r \in R \mid$ $\left.\forall_{u \in U(R)} u r+1 \in U(R)\right\}$;
(2) For any $r \in \Delta(R)$ and $u \in U(R)$, ur, $r u \in \Delta(R)$;

Notations and Definitions

R denotes an associative ring with unity, $J(R)$ denotes the Jacobson radical of R and $U(R)$ is the set of units of R.

Definition

$$
J(R) \subseteq \Delta(R):=\{r \in R \mid r+U(R) \subseteq U(R)\}
$$

Lemma

For any ring R, we have:
(1) $\Delta(R)=\left\{r \in R \mid \forall_{u \in U(R)} r u+1 \in U(R)\right\}=\{r \in R \mid$ $\left.\forall_{u \in U(R)} u r+1 \in U(R)\right\}$;
(2) For any $r \in \Delta(R)$ and $u \in U(R)$, $u r, r u \in \Delta(R)$;
(3) $\Delta(R)$ is a subring of R;

Notations and Definitions

R denotes an associative ring with unity, $J(R)$ denotes the Jacobson radical of R and $U(R)$ is the set of units of R.

Definition

$$
J(R) \subseteq \Delta(R):=\{r \in R \mid r+U(R) \subseteq U(R)\}
$$

Lemma

For any ring R, we have:
(1) $\Delta(R)=\left\{r \in R \mid \forall_{u \in U(R)} r u+1 \in U(R)\right\}=\{r \in R \mid$ $\left.\forall_{u \in U(R)} u r+1 \in U(R)\right\}$;
(2) For any $r \in \Delta(R)$ and $u \in U(R)$, ur, $r u \in \Delta(R)$;
(3) $\Delta(R)$ is a subring of R;
(9) $\Delta(R)$ is an ideal of R if and only if $\Delta(R)=J(R)$;

Notations and Definitions

R denotes an associative ring with unity, $J(R)$ denotes the Jacobson radical of R and $U(R)$ is the set of units of R.

Definition

$$
J(R) \subseteq \Delta(R):=\{r \in R \mid r+U(R) \subseteq U(R)\}
$$

Lemma

For any ring R, we have:
(1) $\Delta(R)=\left\{r \in R \mid \forall_{u \in U(R)} r u+1 \in U(R)\right\}=\{r \in R \mid$ $\forall_{u \in U(R)}$ ur $\left.+1 \in U(R)\right\}$;
(2) For any $r \in \Delta(R)$ and $u \in U(R)$, ur, $r u \in \Delta(R)$;
(3) $\Delta(R)$ is a subring of R;
(9) $\Delta(R)$ is an ideal of R if and only if $\Delta(R)=J(R)$;
(6) For any rings $R_{i}, i \in I, \Delta\left(\prod_{i \in I} R_{i}\right)=\prod_{i \in I} \Delta\left(R_{i}\right)$.

Sketch of the proof

Sketch of the proof
(1) For any $u \in U(R)$ and $r \in R, r u^{-1}+1 \in U(R)$ iff $r+u \in U(R)$ iff $u^{-1} r+1 \in U(R)$.

Sketch of the proof
(1) For any $u \in U(R)$ and $r \in R, r u^{-1}+1 \in U(R)$ iff
$r+u \in U(R)$ iff $u^{-1} r+1 \in U(R)$.
(2) If $r \in \Delta(R)$ and $u, v \in U(R)$ then ($v u) r+1 \in U(R)$ so by (1), $u r \in \Delta$

Sketch of the proof
(1) For any $u \in U(R)$ and $r \in R, r u^{-1}+1 \in U(R)$ iff
$r+u \in U(R)$ iff $u^{-1} r+1 \in U(R)$.
(2) If $r \in \Delta(R)$ and $u, v \in U(R)$ then ($v u) r+1 \in U(R)$ so by (1), $u r \in \Delta$
(3) Let $r, s \in \Delta(R)$. Then
$-r+s+U(R) \subseteq-r+U(R)=-r-U(R) \subseteq U(R)$, i.e. Δ is a subgroup of $R,+$. Then also $r s=r(s+1)-r \in \Delta(R)$, as $r(s+1) \in \Delta(R)$ by (2).

Sketch of the proof
(1) For any $u \in U(R)$ and $r \in R, r u^{-1}+1 \in U(R)$ iff
$r+u \in U(R)$ iff $u^{-1} r+1 \in U(R)$.
(2) If $r \in \Delta(R)$ and $u, v \in U(R)$ then ($v u) r+1 \in U(R)$ so by (1), $u r \in \Delta$
(3) Let $r, s \in \Delta(R)$. Then
$-r+s+U(R) \subseteq-r+U(R)=-r-U(R) \subseteq U(R)$, i.e. Δ is a subgroup of $R,+$. Then also $r s=r(s+1)-r \in \Delta(R)$, as $r(s+1) \in \Delta(R)$ by (2).
(4) If $\Delta(R)$ is an ideal of R and $r \in R$. Then for any $x \in \Delta(R)$, $r x+1 \in U(R)$, and $\Delta(R) \subseteq J(R)$ follows, i.e. $\Delta(R)=J(R)$.

Corollary

(1) $\Delta(R)$ is closed by multiplication (on the right and on the left) by nilpotent elements.

Corollary

(1) $\Delta(R)$ is closed by multiplication (on the right and on the left) by nilpotent elements.
(2) If $2 \in U(R)$ then $\Delta(R)$ is closed by multiplication (on the right and on the left) by idempotents.

Corollary

(1) $\Delta(R)$ is closed by multiplication (on the right and on the left) by nilpotent elements.
(2) If $2 \in U(R)$ then $\Delta(R)$ is closed by multiplication (on the right and on the left) by idempotents.

Example

Let A be a commutative domain such that $J(A) \neq 0$ and define $R=A[t]$. Then $J(R)=0$ and $U(R)=U(A)$, but for any $a \in J(A)$, we have

$$
a+U(R)=a+U(A) \subseteq U(A)=U(R)
$$

Corollary

(1) $\Delta(R)$ is closed by multiplication (on the right and on the left) by nilpotent elements.
(2) If $2 \in U(R)$ then $\Delta(R)$ is closed by multiplication (on the right and on the left) by idempotents.

Example

Let A be a commutative domain such that $J(A) \neq 0$ and define $R=A[t]$. Then $J(R)=0$ and $U(R)=U(A)$, but for any $a \in J(A)$, we have

$$
a+U(R)=a+U(A) \subseteq U(A)=U(R)
$$

So that $0 \neq J(A) \subseteq \Delta(R)$ but $J(R)=0$.

Theorem

Let R be a unital ring and T be the subring of R generated by $U(R)$. Then:
(1) $\Delta(R)=J(T)$ and $\Delta(S)=\Delta(R)$, for any subring S of R such that $T \subseteq S$;
(2) $\Delta(R)$ is the largest Jacobson radical ring contained in R which is closed with respect to multiplication by units of R.

Theorem

Let R be a unital ring and T be the subring of R generated by $U(R)$. Then:
(1) $\Delta(R)=J(T)$ and $\Delta(S)=\Delta(R)$, for any subring S of R such that $T \subseteq S$;
(2) $\Delta(R)$ is the largest Jacobson radical ring contained in R which is closed with respect to multiplication by units of R.

Corollary

Let R be a ring such that every element of R is a sum of units. Then $\Delta(R)=J(R)$.

examples of rings generated by their units

Examples

Some examples of rings generated by their units:

examples of rings generated by their units

Examples

Some examples of rings generated by their units:
(1) $K G$ where K is a division ring, G a group.

examples of rings generated by their units

Examples

Some examples of rings generated by their units:
(1) $K G$ where K is a division ring, G a group.
(2) $M_{n}(R)$ for $n \geq 2$ and R is any ring.

examples of rings generated by their units

Examples

Some examples of rings generated by their units:
(1) $K G$ where K is a division ring, G a group.
(2) $M_{n}(R)$ for $n \geq 2$ and R is any ring.
(3) A clean ring R such that $2 \in U(R)$.

examples of rings generated by their units

Examples

Some examples of rings generated by their units:
(1) $K G$ where K is a division ring, G a group.
(2) $M_{n}(R)$ for $n \geq 2$ and R is any ring.
(3) A clean ring R such that $2 \in U(R)$.
(c) $K\left[x, x^{-1} ; \sigma\right]$ where $\sigma \in \operatorname{Aut}(K)$.

Proposition

Proposition

(1) Let R be an algebra over a field F. If $\operatorname{Dim}_{F} R<|F|$ then $\Delta(R)$ is a nil ring.

Proposition

(1) Let R be an algebra over a field F. If $\operatorname{Dim}_{F} R<|F|$ then $\Delta(R)$ is a nil ring.
(2) If R is an algebra over a field F, algebraic elements from $\Delta(R)$ are nilpotent.

Proposition

(1) Let R be an algebra over a field F. If $\operatorname{Dim}_{F} R<|F|$ then $\Delta(R)$ is a nil ring.
(2) If R is an algebra over a field F, algebraic elements from $\Delta(R)$ are nilpotent.
(3) Let S be a subring of R such that $U(S)=U(R) \cap S$. Then $\Delta(R) \cap S \subseteq \Delta(S)$.

Proposition

(1) Let R be an algebra over a field F. If $\operatorname{Dim}_{F} R<|F|$ then $\Delta(R)$ is a nil ring.
(2) If R is an algebra over a field F, algebraic elements from $\Delta(R)$ are nilpotent.
(3) Let S be a subring of R such that $U(S)=U(R) \cap S$. Then $\Delta(R) \cap S \subseteq \Delta(S)$.
(9) Let I be an ideal of R such that $I \subseteq J(R)$. Then $\Delta(R / I)=\Delta(R) / I$.

Proposition

(1) Let R be an algebra over a field F. If $\operatorname{Dim}_{F} R<|F|$ then $\Delta(R)$ is a nil ring.
(2) If R is an algebra over a field F, algebraic elements from $\Delta(R)$ are nilpotent.
(3) Let S be a subring of R such that $U(S)=U(R) \cap S$. Then $\Delta(R) \cap S \subseteq \Delta(S)$.
(9) Let I be an ideal of R such that $I \subseteq J(R)$. Then $\Delta(R / I)=\Delta(R) / I$.
(6) $\Delta(R) \cap Z(R) \subseteq \Delta(Z(R))$.

An example

Let A be a commutative domain with $J(A) \neq 0$ and $S=A[x]$. Then $0 \neq J(A) \subseteq \Delta(S)$ and clearly $J(S)=0 . R=M_{2}(S)$, where A is a commutative local domain. As we have seen $\Delta(R)=J(R)=0$. Notice that the center $Z=Z(R)$ of $R=M_{2}(S)$ is isomorphic to S and $U(Z)=U(R) \cap Z$. Therefore $0=\Delta(R) \cap Z \subseteq \Delta(Z) \simeq J(A) \neq 0$. Thus the inclusion from the above corollary (5) can be strict even when $J(R)=0=J(Z(R))$.

Delta hat

For a ring $R(1 \in R)$ and a subring $S \subset R$ such that $1 \notin S$, we denote \widehat{S} the subring of R generated by $S \cup\{1\}$.

Proposition

(1) For any unital ring $R, \Delta(\widehat{\Delta(R)})=\Delta(R)$, i.e. Δ is a closure operator.
(2) $U(\widehat{\Delta(R)})=U(R) \cap \widehat{\Delta(R)}$.

Delta hat

For a ring $R(1 \in R)$ and a subring $S \subset R$ such that $1 \notin S$, we denote \widehat{S} the subring of R generated by $S \cup\{1\}$.

Proposition

(1) For any unital ring $R, \Delta(\widehat{\Delta(R)})=\Delta(R)$, i.e. Δ is a closure operator.
(2) $U(\widehat{\Delta(R)})=U(R) \cap \widehat{\Delta(R)}$.

Examples

For any ring R denote $T_{n}(R)$ the upper triangular matrix rings over R and $J_{n}(R)$ all strictly upper triangular matrices.
(1) $\Delta\left(T_{n}(R)\right)=D_{n}(\Delta(R))+J_{n}(R)$;

Delta hat

For a ring $R(1 \in R)$ and a subring $S \subset R$ such that $1 \notin S$, we denote \widehat{S} the subring of R generated by $S \cup\{1\}$.

Proposition

(1) For any unital ring $R, \Delta(\widehat{\Delta(R)})=\Delta(R)$, i.e. Δ is a closure operator.
(2) $U(\widehat{\Delta(R)})=U(R) \cap \widehat{\Delta(R)}$.

Examples

For any ring R denote $T_{n}(R)$ the upper triangular matrix rings over R and $J_{n}(R)$ all strictly upper triangular matrices.
(1) $\Delta\left(T_{n}(R)\right)=D_{n}(\Delta(R))+J_{n}(R)$;
(2) $\Delta\left(R[x] /\left(x^{n}\right)\right)=\Delta(R)[x] /\left(x^{n}\right)$;

Delta hat

For a ring $R(1 \in R)$ and a subring $S \subset R$ such that $1 \notin S$, we denote \widehat{S} the subring of R generated by $S \cup\{1\}$.

Proposition

(1) For any unital ring $R, \Delta(\widehat{\Delta(R)})=\Delta(R)$, i.e. Δ is a closure operator.
(2) $U(\widehat{\Delta(R)})=U(R) \cap \widehat{\Delta(R)}$.

Examples

For any ring R denote $T_{n}(R)$ the upper triangular matrix rings over R and $J_{n}(R)$ all strictly upper triangular matrices.
(1) $\Delta\left(T_{n}(R)\right)=D_{n}(\Delta(R))+J_{n}(R)$;
(2) $\Delta\left(R[x] /\left(x^{n}\right)\right)=\Delta(R)[x] /\left(x^{n}\right)$;
(3) $\Delta(R[[x]])=\Delta(R)[[x]]$.

Proposition

For any ring $R, \Delta(R)=J(R)$ if and only if $\Delta(R / J(R))=0$.

Proposition

For any ring $R, \Delta(R)=J(R)$ if and only if $\Delta(R / J(R))=0$.
The following theorem indicates a few classes of rings in which $\Delta(R)=J(R)$.

Proposition

For any ring $R, \Delta(R)=J(R)$ if and only if $\Delta(R / J(R))=0$.
The following theorem indicates a few classes of rings in which $\Delta(R)=J(R)$.

Theorem

$\Delta(R)=J(R)$ if R is a ring satisfying one of the following conditions:
(1) $R / J(R)$ is isomorphic to a product of matrix rings and division rings.

Proposition

For any ring $R, \Delta(R)=J(R)$ if and only if $\Delta(R / J(R))=0$.
The following theorem indicates a few classes of rings in which $\Delta(R)=J(R)$.

Theorem

$\Delta(R)=J(R)$ if R is a ring satisfying one of the following conditions:
(1) $R / J(R)$ is isomorphic to a product of matrix rings and division rings.
(2) R is a semilocal ring.

Proposition

For any ring $R, \Delta(R)=J(R)$ if and only if $\Delta(R / J(R))=0$.
The following theorem indicates a few classes of rings in which $\Delta(R)=J(R)$.

Theorem

$\Delta(R)=J(R)$ if R is a ring satisfying one of the following conditions:
(1) $R / J(R)$ is isomorphic to a product of matrix rings and division rings.
(2) R is a semilocal ring.
(3) R is a clean ring such that $2 \in U(R)$.

Proposition

For any ring $R, \Delta(R)=J(R)$ if and only if $\Delta(R / J(R))=0$.
The following theorem indicates a few classes of rings in which $\Delta(R)=J(R)$.

Theorem

$\Delta(R)=J(R)$ if R is a ring satisfying one of the following conditions:
(1) $R / J(R)$ is isomorphic to a product of matrix rings and division rings.
(2) R is a semilocal ring.
(3) R is a clean ring such that $2 \in U(R)$.
(4) R is a $U J$-ring, i.e. when $U(R)=1+J(R)$.

Proposition

For any ring $R, \Delta(R)=J(R)$ if and only if $\Delta(R / J(R))=0$.
The following theorem indicates a few classes of rings in which $\Delta(R)=J(R)$.

Theorem

$\Delta(R)=J(R)$ if R is a ring satisfying one of the following conditions:
(1) $R / J(R)$ is isomorphic to a product of matrix rings and division rings.
(2) R is a semilocal ring.
(3) R is a clean ring such that $2 \in U(R)$.
(4) R is a $U J$-ring, i.e. when $U(R)=1+J(R)$.
(5) R has stable range 1 .

Proposition

For any ring $R, \Delta(R)=J(R)$ if and only if $\Delta(R / J(R))=0$.
The following theorem indicates a few classes of rings in which $\Delta(R)=J(R)$.

Theorem

$\Delta(R)=J(R)$ if R is a ring satisfying one of the following conditions:
(1) $R / J(R)$ is isomorphic to a product of matrix rings and division rings.
(2) R is a semilocal ring.
(3) R is a clean ring such that $2 \in U(R)$.
(4) R is a $U J$-ring, i.e. when $U(R)=1+J(R)$.
(0) R has stable range 1 .
(0) $R=F G$ is a group algebra over a field F.

Idempotents

Theorem

For any ring R, the following conditions hold: (1) $\Delta(R)$ does not contain nonzero idempotents.

Idempotents

Theorem

For any ring R, the following conditions hold:
(1) $\Delta(R)$ does not contain nonzero idempotents.
(2) $\Delta(R)$ does not contain nonzero unit regular elements.

Idempotents

Theorem

For any ring R, the following conditions hold:
(1) $\Delta(R)$ does not contain nonzero idempotents.
(2) $\Delta(R)$ does not contain nonzero unit regular elements.
(3) Let $e^{2}=e$ be such that $e \Delta(R) e \subseteq \Delta(R)$. Then $e \Delta(R) e \subseteq \Delta(e R e)$.

The inclusion of the last statement can be strict this is the first example of the following ones.

Examples

The inclusion of the last statement can be strict this is the first example of the following ones.

Examples

(1)Let S be any ring such that $J(S)=0$ and $\Delta(S) \neq 0$ and let $R=M_{2}(S)$. Then $\Delta(R)=J(R)=0$. Therefore, if $e=e_{11} \in R$, then $e \Delta(R) e=e J(R) e=J(e R e)=0$. and $\Delta(e R e) \simeq \Delta(S) \neq 0$. This shows that the inclusion $e \Delta(R) e \subsetneq \Delta(e R e)$.

The inclusion of the last statement can be strict this is the first example of the following ones.

Examples

(1)Let S be any ring such that $J(S)=0$ and $\Delta(S) \neq 0$ and let $R=M_{2}(S)$. Then $\Delta(R)=J(R)=0$. Therefore, if $e=e_{11} \in R$, then $e \Delta(R) e=e J(R) e=J(e R e)=0$. and $\Delta(e R e) \simeq \Delta(S) \neq 0$. This shows that the inclusion $e \Delta(R) e \subsetneq \Delta(e R e)$.
(2) Let $R=\mathbb{F}_{2}<x, y>/<x^{2}>$. Then $J(R)=0$ and $U(R)=1+\mathbb{F}_{2} x+x R x$. In particular $\mathbb{F}_{2} x+x R x$ is contained in $\Delta(R)$ but $J(R)=0$.

The inclusion of the last statement can be strict this is the first example of the following ones.

Examples

(1)Let S be any ring such that $J(S)=0$ and $\Delta(S) \neq 0$ and let $R=M_{2}(S)$. Then $\Delta(R)=J(R)=0$. Therefore, if $e=e_{11} \in R$, then $e \Delta(R) e=e J(R) e=J(e R e)=0$. and $\Delta(e R e) \simeq \Delta(S) \neq 0$.
This shows that the inclusion $e \Delta(R) e \subsetneq \Delta(e R e)$.
(2) Let $R=\mathbb{F}_{2}<x, y>/<x^{2}>$. Then $J(R)=0$ and
$U(R)=1+\mathbb{F}_{2} x+x R x$. In particular $\mathbb{F}_{2} x+x R x$ is contained in $\Delta(R)$ but $J(R)=0$.

Let us end this part with the following proposition.

Proposition

Let R be 2-primal ring. Then $\Delta(R[x])=\Delta(R)+J(R[x])$.

Another Short Story

Quasi-inverses and reflexive inverses

Another Short Story

Quasi-inverses and reflexive inverses

Joint work with A. Alahmadi and S.K. Jain

Another Short Story

Quasi-inverses and reflexive inverses

Joint work with A. Alahmadi and S.K. Jain
An element $a \in R$ is a (von Neumann) regular element if $I(a):=\{x \in R \mid a=a x a\} \neq \emptyset$. In this case $\operatorname{ref}(a)=\{x \in I(a) \mid x a x=x\} \neq \emptyset$. The element of $\operatorname{ref}(a)$ are the reflexive inverses of a.

Another Short Story

Quasi-inverses and reflexive inverses

Joint work with A. Alahmadi and S.K. Jain
An element $a \in R$ is a (von Neumann) regular element if
$I(a):=\{x \in R \mid a=a x a\} \neq \emptyset$. In this case $\operatorname{ref}(a)=\{x \in I(a) \mid x a x=x\} \neq \emptyset$. The element of $\operatorname{ref}(a)$ are the reflexive inverses of a.

Lemma

For $a \in R$ and $a_{0} \in I(a)$, we have

$$
I(a)=\left\{a_{0}+t-a_{0} a t a a_{0} \mid t \in R\right\} .
$$

Proposition

For $a \in \operatorname{Reg}(R)$, let $\varphi_{a}: I(a) \longrightarrow \operatorname{Ref}(a)$ be such that $\varphi_{a}(x)=x a x$. Then
(1) The map φ_{a} is onto.
(2) $\operatorname{Ref}(a)=I(a) a I(a)$.
(3) If $x, y \in I(a)$ are such that $\varphi_{a}(x)=\varphi_{a}(y)$ then $x-y \in I(a) \cap r(a)$.
(9) Let $x \in \operatorname{Ref}(a)$, then $\varphi_{a}(x)=x$.

Proposition

For $a \in \operatorname{Reg}(R)$, let $\varphi_{a}: I(a) \longrightarrow \operatorname{Ref}(a)$ be such that $\varphi_{a}(x)=x a x$. Then
(1) The map φ_{a} is onto.
(2) $\operatorname{Ref}(a)=I(a) a I(a)$.
(3) If $x, y \in I(a)$ are such that $\varphi_{a}(x)=\varphi_{a}(y)$ then $x-y \in I(a) \cap r(a)$.
(9) Let $x \in \operatorname{Ref}(a)$, then $\varphi_{a}(x)=x$.

Lemma

Let $a_{0} \in I(a)$. Write $e=a a_{0}, f=a_{0} a$ and $e^{\prime}=1-e, f^{\prime}=1-f$. Then
(i) $\operatorname{lann}(a)=I(a)+r(a)=R e^{\prime}+f^{\prime} R$.
(ii) $I(a)=a_{0}+\operatorname{lann}(a)=a_{0}+R e^{\prime}+f^{\prime} R$.
(iii) If $a_{0} \in \operatorname{Ref}(a)$, then $\operatorname{Ref}(a)=a_{0}+f R e^{\prime}+f^{\prime} R e+f^{\prime} R a R e^{\prime}$.

Proposition

Let R be a semiprime ring. If $a \in \operatorname{Reg}(R)$, then for any $b \in R$, $b l(a) b$ is a singleton set if and only if $b \in R a \cap a R$.

Proposition

Let R be a semiprime ring. If $a \in \operatorname{Reg}(R)$, then for any $b \in R$, $b l(a) b$ is a singleton set if and only if $b \in R a \cap a R$.

Proposition

Let R be a semiprime ring and let $a . b \in \operatorname{Reg}(R)$. Then $I(a) \subseteq I(b)$ if and only if $b R \cap d R=0$ and $R b \cap R d=0$ where $a=d+b$.

Proposition

Let R be a semiprime ring. If $a \in \operatorname{Reg}(R)$, then for any $b \in R$, $b l(a) b$ is a singleton set if and only if $b \in R a \cap a R$.

Proposition

Let R be a semiprime ring and let $a . b \in \operatorname{Reg}(R)$. Then $I(a) \subseteq I(b)$ if and only if $b R \cap d R=0$ and $R b \cap R d=0$ where $a=d+b$.

Theorem

Let a, b be two elements in a semiprime ring R, the following are equivalent
(1) $a=b$
(2) $\operatorname{Ref}(a)=\operatorname{Ref}(b)$
(3) $I(a)=I(b)$

THANK YOU!

